Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 419-426, 2021.
Article in English | WPRIM | ID: wpr-897306

ABSTRACT

In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branchedchain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

2.
Biomolecules & Therapeutics ; : 419-426, 2021.
Article in English | WPRIM | ID: wpr-889602

ABSTRACT

In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branchedchain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

3.
The Korean Journal of Physiology and Pharmacology ; : 577-584, 2018.
Article in English | WPRIM | ID: wpr-727866

ABSTRACT

Bladder dysfunction is a common complication of diabetes mellitus (DM). However, there have been a few studies evaluating bladder smooth muscle contraction in DM in the presence of pharmacological inhibitors. In the present study, we compared the contractility of bladder smooth muscle from normal rats and DM rats. Furthermore, we utilized pharmacological inhibitors to delineate the mechanisms underlying bladder muscle differences between normal and DM rats. DM was established in 14 days after using a single injection of streptozotocin (65 mg/kg, intraperitoneal) in Sprague-Dawley rats. Bladder smooth muscle contraction was induced electrically using electrical field stimulation consisting of pulse trains at an amplitude of 40 V and pulse duration of 1 ms at frequencies of 2–10 Hz. In this study, the pharmacological inhibitors atropine (muscarinic receptor antagonist), U73122 (phospholipase C inhibitor), DPCPX (adenosine A₁ receptor antagonist), udenafil (PDE5 inhibitor), prazosin (α₁-receptor antagonist), verapamil (calcium channel blocker), and chelerythrine (protein kinase C inhibitor) were used to pretreat bladder smooth muscles. It was found that the contractility of bladder smooth muscles from DM rats was lower than that of normal rats. In addition, there were significant differences in percent change of contractility between normal and DM rats following pretreatment with prazosin, udenafil, verapamil, and U73122. In conclusion, we suggest that the decreased bladder muscle contractility in DM rats was a result of perturbations in PLC/IP₃-mediated intracellular Ca²⁺ release and PDE5 activity.


Subject(s)
Animals , Rats , Atropine , Diabetes Mellitus , Muscle, Smooth , Phosphotransferases , Prazosin , Rats, Sprague-Dawley , Streptozocin , Type C Phospholipases , Urinary Bladder , Verapamil
SELECTION OF CITATIONS
SEARCH DETAIL